منابع مشابه
Gorenstein rings through face rings of manifolds
The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the sphere g-conjecture implies all enumerative consequences of its far reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s manifold g-c...
متن کاملIntersection Multiplicities over Gorenstein Rings
LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...
متن کاملPurity and Gorenstein Filtered Rings
In this paper, we discuss on the existence of filtrations of modules having good properties. In particular, we focus on filtered homomorphisms called strict, and show that there exists a filtration which makes a filtered homomorphism a strict filtered homomorphism. Moreover, by using this result, we study purity for filtered modules over a Gorenstein filtered ring.
متن کاملHamiltonian Tournaments and Gorenstein Rings
Let Gn be the complete graph on the vertex set [n] = {1, 2, . . . , n} and ω an orientation of Gn , i.e., ω is an assignment of a direction i → j of each edge {i, j} of Gn . Let eq denote the qth unit coordinate vector of Rn . Write P(Gn ;ω) ⊂ R n for the convex hull of the (n 2 ) points ei − e j , where i → j is the direction of the edge {i, j} in the orientation ω. It will be proved that, for...
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.12.023